

Phenotype Switching during Tumor Necrosis Factor alpha Signaling Shubhank Sherekar,[§] Sonal Manohar,[§] Hrushikesh Loya,[§] Reshma Patil, Ganesh Viswanathan* Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India *Corresponding author (Email: ganeshav@iitb.ac.in) [§]Equal contributions

Abstract

Tumor Necrosis Factor alpha (TNF α) is a pleiotropic cytokine involved in phenotypic decisions such as apoptotic/necrotic death, proliferation. Aberrant TNF α signaling is implicated in numerous pathological conditions. Designing therapeutic strategies to modulate these conditions require insights into the mechanisms governing context-specific phenotypic response to TNF α . Signal transduction culminating in such responses is orchestrated by underlying molecular network of nodes interconnected by edges. Using a comprehensive, wellannotated, manually curated TNF- α signaling network, we show that a graph-theory based dimensionality reduction via modularization can lead to functionally consistent, conserved modules in the network. We identify 19 candidates which when knocked down one-ata-time significantly disturbs the network robustness yet preserves network modularity. Boolean dynamic simulations and attractor analysis of the underlying state transition graph show that targeting cIAP1/2 and MKRN1 can lead to reliable phenotype switching from proliferation to apoptosis. Knocking off BAX-BAK and LUBAC may result in switching from apoptosis to proliferation. These combinations causing phenotype switching could be potential targets for TNFα based therapeutic strategies.

targets that enable phenotype switching.

Attribute	Count	
Nodes	423	
Edges	341	
Proteins	275	
Genes+mRNA	62	
Phenotypes	4	
Primary Literature	663	
Boolean rules (Logic)	284	
Input + Housekeeping nodes	140	
Fixed-point attractors	27	

Target identification: Topological and fixed-point attractor analysis

Network consists of 24 functionally consistent modules	Phenotype probability	Phenotype Switching	
Regulation of transcr. 2 Nucl protein degr. Infl. mRNA degr.	Apoptosis	O 7 Single knock-out	Double knock-out
	P _A ^{WT} =0.65 tBID, Apoptosome	BAX/BAK Casp 8 cIAP1/2 TRADD	cIAP1/2 p38 Casp 8 Bax/BAK

Modularity and Robustness

Modularity (M) is the fraction of weighted directed edges between nodes in a

module vs expected fraction if randomly connected.² Range for M is [0,1]

under perturbations.³ Range for R is [0, 1]

Robustness (R) is the persistence of the network's characteristic behavior candidate within bracket is the number of

i modules obtained after knock-out.

(19) BAX-BAK

Figure 5: Single or double knock-outs causing

reduction in both network modularity (M)

and robustness (R). Number next to a

NFkB-IkB (26)

p38(17)

proliferation phenotype.

. Huang et al. (2008), Nature Prot.

Davidich *et al* (2013), PLoS One

Saadatpour and Albert (2013), Methods

2. Newman (2011), Nature Physics

. Stelling *et al*. (2004), Cell

We acknowledge Department of Science and Technology (DST), Govt. of India, for financial support (Code: their SB/S3/CE/048/2014) and Department of Biotechnology for providing fellowship to SS (Fellow No. DBT/2017/IIT-B/852)