

Phenotype Switching during Tumor Necrosis Factor alpha Signaling **Shubhank Sherekar, § Sonal Manohar, § Hrushikesh Loya, § Reshma Patil, Ganesh Viswanathan*** Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India *Corresponding author (Email: ganeshav@iitb.ac.in) §Equal contributions

Abstract

Tumor Necrosis Factor alpha (TNFα) is a pleiotropic cytokine involved in phenotypic decisions such as apoptotic/necrotic death, proliferation. Aberrant TNFα signaling is implicated in numerous pathological conditions. Designing therapeutic strategies to modulate these conditions require insights into the mechanisms governing context-specific phenotypic response to TNFα. Signal transduction culminating in such responses is orchestrated by underlying molecular network of nodes interconnected by edges. Using a comprehensive, wellannotated, manually curated TNF-α signaling network, we show that a graph-theory based dimensionality reduction via modularization can lead to functionally consistent, conserved modules in the network. We identify 19 candidates which when knocked down one-ata-time significantly disturbs the network robustness yet preserves network modularity. Boolean dynamic simulations and attractor analysis of the underlying state transition graph show that targeting cIAP1/2 and MKRN1 can lead to reliable phenotype switching from proliferation to apoptosis. Knocking off BAX-BAK and LUBAC may result in switching from apoptosis to proliferation. These combinations causing phenotype switching could be potential targets for TNFα based therapeutic strategies.

> We acknowledge Department of Science and Technology (DST), Govt. of India, for financial support (Code: SB/S3/CE/048/2014) and Department of Biotechnology for providing fellowship to SS (Fellow No. DBT/2017/IIT-B/852)

ITC LIVUIN JLALIJLIUJ	
Attribute	Count
Nodes	423
Edges	341
Proteins	275
Genes+mRNA	62
Phenotypes	$\boldsymbol{\mathcal{A}}$
Primary Literature	663
Boolean rules (Logic)	284
Input + Housekeeping nodes	140
Fixed-point attractors	27

Target identification: Topological and fixed-point attractor analysis

proliferation phenotype.

Figure 3: 24 functionally consistent modules. Function assigned using GO terms.¹ M=0.85

References **Acknowledgements**

Modularity (M) is the fraction of weighted directed edges between nodes in a

1. Huang *et al*. (2008)*,* Nature Prot. 2. Newman (2011), Nature Physics 3. Stelling *et al*. (2004), Cell 4. Davidich *et al* (2013)*,* PLoS One 5. Saadatpour and Albert (2013), Methods **Figure 5**: Single or double knock-outs causing $\frac{1}{1}$ reduction in both network modularity (M)! and robustness (R). Number next to a modules obtained after knock-out.

module vs expected fraction if randomly connected. ² Range for M is [0,1]

Robustness (R) is the persistence of the network's characteristic behavior candidate within bracket is the number of

under perturbations. ³ Range for R is [0, 1]

(23) caspase-8 \sim CIAP1/2 (24) X _{NFkB-IkB} (26) (29) BAX-BAR \sim p38 (17)

targets that enable phenotype switching.

Modularity and Robustness