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Tumor Necrosis Factor alpha (TNFa) is a pleiotropic
cytokine involved in phenotypic decisions such as Iﬂ“;‘iksgjte
apoptotic/necrotic death, proliferation. Aberrant TNFa/| [chain(m
signaling is implicated in numerous pathological
conditions. Desighing therapeutic strategies to modulate
these conditions require insights into the mechanisms
governing context-specific phenotypic response to TNFa.
Signal transduction culminating in such responses is
orchestrated by underlying molecular network of nodes
interconnected by edges. Using a comprehensive, well-
annotated, manually curated TNF-a sighaling network,
we show that a graph-theory based dimensionality
reduction via modularization can lead to functionally

consistent, conserved modules in the network. We
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| via single/double knock-out.
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 BAX-BAK & LUBAC: Combination target for switching apoptosis to
proliferation phenotype.
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