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Abstract

Survival models are used in various fields, such as the development of can-
cer treatment protocols. Although many statistical and machine learning
models have been proposed to achieve accurate survival predictions, little
attention has been paid to obtain well-calibrated uncertainty estimates as-
sociated with each prediction. The currently popular models are opaque
and untrustworthy in that they often express high confidence even on those
test cases that are not similar to the training samples and even if their pre-
dictions are wrong. We propose a Bayesian framework for survival models
that not only gives more accurate survival predictions but also quantifies
the survival uncertainty better. Our approach is a novel combination of
variational inference for uncertainty estimation, neural multi-task logistic
regression for estimating nonlinear and time-varying risk models, and an
additional sparsity-inducing prior to work with high dimensional data.

1 Introduction

Survival modeling is key to precision oncology wherein cancer management, and treatment
planning is personalized to a patient’s clinical, pathological, demographical, and genomic
state. Aided by the digitization of medical records, several studies over the past four decades
have collected survival data based on longitudinal follow-up for various patient cohorts.
Modeling survival in a cohort based on covariates known at the time of prediction is a
complex task because the covariates to be taken into account can be large in number. These
covariates can be entangled with each other by their interdependencies and interactions.
A good survival model should give both (a) accurate survival estimates, and (b) a well-
calibrated measure of uncertainty. We address the second problem in this work, which has
escaped the attention it deserves. Most of the machine learning models trade complexity
and accuracy for interpretability, and may not indicate a drop in confidence even when their
prediction is off on the test inputs, or the test inputs are outliers with respect to the training
input data distribution.

Cox proportional hazards model (Cox-PH) proposed by |Cox| (1972)) is one of the oldest
and most popular statistical models to predict survival. Cox-PH uses a hazard function to
model the survival in a cohort and assumes that a patient’s relative log-risk of treatment
failure (disease recurrence or death) at any time is a linear combination of the patient’s
covariates that scales the underlying hazard function, which is another restrictive assump-
tion. Multi-task logistic regression (MTLR) was proposed by [Yu et al.| (2011) as a remedy
to the assumption of temporal constancy of relative risk between two patients, which led
to increased prediction accuracy over Cox-PH. MTLR uses multi-task regression and joint
likelihood minimization to model log-risk in a given time interval as a linear combination of
the covariates. Recently, neural-MTLR was proposed by |Fotso| (2018) to move away from
the linearity assumption as well to increase the prediction accuracy. Neural-MTLR models
nonlinear interactions among covariates as features extracted by the lower layers of a neural
network, whose last layers are same as that of MTLR.

The above mentioned survival models are unable to access per-patient uncertainty in survival
predictions. Uncertainty calibration is important if survival prediction models are to be
deployed in clinical settings. The prediction of any model is usually untrustworthy when the
test data from a new patient is out of the training distribution (OOD). In such OOD cases, it
is important to involve human experts, and hence it is important to identify such cases with
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the model rightfully expressing high uncertainty or low confidence. Bayesian neural networks
(BNNs) provide a framework to capture the underlying uncertainties inherent to both the
data (data uncertainty) and the limitations of the model (model uncertainty). We propose
a Bayesian extension of MTLR and neural-MTLR that can capture patient-specific survival
uncertainties. We also show how capturing the uncertainty in the prediction helps us handle
heterogeneous data and analyze prognostically important covariates. We further incorporate
a sparsity inducing prior in our model to handle a large number of input covariates.

2 Theoretical Background and Proposed Method

2.1 Survival models

The setting that we assume has a set of covariates x; associated with each patient i, a time
to adverse event (T;) (usually death or disease recurrence), and an event indicator (E;). The
event indicator F; = 1 means that the patient died after a time interval of T;. Patients with
E; = 0 are called right-censored, indicating that she was surviving (or living disease-free)
at time T;, but survival beyond that time in unknown.

The survival function and hazard function are two important outcomes of the survival
models. The survival function, S(t) = P(T" > t), is the probability of a patient to survive
more than time t. The hazard function A(t) is given by limat o P(t > T > t+ At | T >
t)/At, which means the probability that an individual will not survive an extra infinitesimal
amount of time At, given they have already survived up to time t. Cox-PH (Cox, 1972)
models the hazard function A(¢|Z) at time ¢ for a given vector input covariates Z in terms
of an underlying hazard function Ao(¢) and linear weights 6 for the covariates as follows:

Mt Z) = Ao(t) exp(ZT0).

MTLR (Yu et al2011)) assumes a series of logistic regression models for m+1 time intervals,
where m is chosen based on the desired fineness of temporal variation and the size of the
training data, as follows: Py, (T > ¢; | =) = (1 + exp(0;.7 + b;))"1;0 < i < m. The
parameters 9_; and b; depend on the time interval ¢, whereas the input vector ¥ is same
for all the regression models. However, the outputs of these logistic regression models
are not independent, because a death event at time t; would mean a death event at all
subsequent time points ¢;,j > i. We encode the output of the regression model, using a
m-dimensional binary sequence y = (y1, Y2, ¥3..-Ym ), where, y; = 0 means that the patient
is living at time ¢; and y; = 1 means that the patient is dead at time ;. Thus, once
we encounter a y; = 1, all subsequent y;,j > ¢ are bound to be 1. A smoothness prior
on the parameters across time ensures that the predictions are not noisy. The probability
of observing a sequence y = (y1,¥Y2,Y3..-Ym) is the likelihood of the model. It can be
generalized by the logistic regression model as follows: Py(Y = (y1,y2,y3---ym) | ) =

(S0 00,7+ 50)] / (S eap(fo(F, k), where fo(Z, k) = S04 (017 + o)

The loss function for uncensored patients is obtained by taking the logarithm of the joint
likelihood term and adding regularization terms for temporal smoothness of the parameters
and the resultant predictions, as follows:

C m - 2 C m = 5 2 n m . m .
L= EIZ 1951l +7QZ 10540 = G517 => 1D D wi(s:) (0.8 + b;) —log(> _ exp(fol:, k)
j =1

=1 i=1 | j=1 k=0
(1)

where Cy and Cy are hyperparameters which control the amount of smoothing in the pa-
rameters and n is the number of patients.

For right-censored patients (those who are lost to follow-up), there are more than one
consistent binary sequences of y;’s. In this case the likelihood of the patient is the
sum of likelihoods of all possible sequences. The overall likelihood for censored patients
whose last contact was closest to time point t; is given as follows: Py, (T > ¢; | ) =

[0 ean(fo@, k)] / [0 can(fol, k)]
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Neural-MTLR (Fotsol [2018) models nonlinear combinations of the covariates as inputs to
the MTLR model, where both the MTLR model and the nonlinear feature extraction are
trained end-to-end using backpropagation (gradient descent) on a loss function similar to
Equation [T}

2.2  Variational Inference

A feed-forward neural network trained with gradient descent will arrive at point estimates.
However, in the case of Bayesian NNs (BNNs), the weights are not point estimates but a
parameterized probability distribution. Our task is to find a distribution over the param-
eters given the input data, i.e., p(6 | D). With this posterior, we can predict test output
y* for a new test input x* by marginalizing the likelihood over the parameters §. However,
even for the modest-sized NNs, the number of parameters prohibits an analytical calcula-
tion of uncertainty, and one has to resort to approximate inference methods. We define an
approximating variational distribution ¢ (6) with parameters ¢. Then the Kullback-Leibler
divergence (KL) with respect to the parameters v is minimized between the proposed pos-
terior and the true posterior, as follows:

KL(ay O)1p61D) = [ a(6) g 250 a9 2

Minimizing the KL divergence is equivalent to minimizing the variational free energy (Friston
et al.l [2007), (Blundell et al, |2015)), where the latter is often computed on M mini batches
D' D% ..., D™ for computational tractability. We then estimate the cost using an unbiased
Monte Carlo (MC) approximation for each mini batch as follows: 67 ~ qy(0), L(¢) =
= X log(p(yil f* (x:))) + (1/M)KL(qy (0)||p(0))-

i€DJ
2.3 Proposed probabilistic weights to model uncertainty

We assume the posterior and the prior on weights to be a spike and slab, which is standard
for sparse linear models (Mitchell & Beauchamp) |1988) (George & McCulloch,|1993) (Titsias
& Lazaro-Gredillal [2011). Recently, a closed form expression for the KL divergence between
the spike and slab posterior and spike and slab prior was derived by [Tonolini et al.| (2019)),
which we utilized in this work. The prior probability density is given as follows: py(6) =

Hfil(aj\/'(ﬁi; 0,1) + (1 — a)d(6;)), where (.) is the dirac delta function centered at zero.
The sparsity of solution can be increased for this prior by decreasing a from one to zero.
The posterior is chosen to be of similar form, given as: ¢u(0) = Hiil(%./\f(&;ui,of) +
(1 —~;,)d(60;)), where p;, o; and ~; are the parameters of the neural network. The choice
of posterior not only allows us to derive an analytical lower bound for the KL divergence
between assumed posterior and prior but also gives additional degree of freedom compared
to a fully factorized Gaussian.

In order to quantify data uncertainty, we use the standard trick of predicting not only mean
but also the variance of survival probability (Kendall & Gall 2017)). Our overall prediction

now becomes a sample drawn from this Gaussian, as follows: (9,6%) = f%(2);your = § +
G.¢;e ~ N(0,1). The loss function for the mini batch D of our Bayesian variant is given as
follows:

£0) = —1ogp(D')6") Z (% 2+ 02— tos(o2) + (1 = 3 low( =) 1w )
, (3)
0" ~ qy(0),
where M is the number of mini-batches and N is the total number of parameters. One
can see that setting & = 1 and v = 1 reduces this expression to a fully factorized Gaussian
posterior and prior that is used in varational autoencoders (Kingma & Welling, 2013)).

We used a simple one-hidden layer Bayesian neural network with spike and slab prior and
posterior, and ReLU activation in all but the final layer. Instead of having a fully connected
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Figure 1: Proposed neural network architecture with weights sampled from the spike and
slab posterior give survival probability (solid curve), along with data uncertainty (vertical
bars), and model uncertainty (shaded region).

structure from the first layer to the hidden layer, we only assume a one-to-one mapping to
simulate variable elimination based on the sparsity inducing prior, as shown in Figure

3 Results

Using a subset of 47 out of the PAMb50 gene expressions and clinical variables that were
common to both TCGA-BRCA E| and METABRIC (Curtis et al.| [2012)) datasets we trained
on one dataset and tested on the other to obtain results on model accuracy. We combined
both datasets and held out samples at random for experiments on variable importance and
uncertainty estimation.

3.1 Survival predictions

C-index and Integrated Brier Score (IBS) are two commonly used metrics for analyzing the
accuracy of survival models for censored data, where the former is a generalization of the
area under the ROC curve (AUC), and the latter is the average weighted squared distance
between the observed and predicted survival. Thus, a higher C-index and lower IBS implies
a more accurate model. Table [1| shows our method performs better compared to Cox-PH,
MTLR, and a comparable neural-MTLR model with a single hidden layer.

Table 1: Comparison of mean (+ std. dev.) C-index and IBS across survival models using
one of TCGA-BRCA and METABRIC datasets for training and the other for testing.

Methods C-index IBS
Cox-PH 0.65 £+ 0.10 | 0.20 + 0.07
MTLR 0.68 £+ 0.06 | 0.21 4+ 0.06
N-MTLR 0.68 & 0.02 | 0.16 £ 0.04
Our Method | 0.71 & 0.05 | 0.12 £ 0.02

3.2 Ranking prognostic features

We obtained feature importance for each input feature based on the distribution of weights
learned by the network from the first layer to the hidden layer. We interpreted the ratio of
mean and standard deviation of the weight associated with a feature as its signal to noise
ratio. In case of spike and slab posterior, the signal to noise ratio for feature i is given by:
| wi | /(oi*:). We observe in Figure [2 that age at diagnosis, lymph node metastasis, and
tumor stage are among the top three prognostically important features.

"https://www.cancer.gov/tcga
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Feature Importance

Figure 2: Importance scores for a truncated list of the features (numbers represent gene
Entrez ID)

3.3 Low confidence on out of distribution (OOD) test data

In order to demonstrate the use of quantifying uncertainty, we divided the entire data
(TCGA + METABRIC) into old (age > 60 years) and young patients (age < 60 years). We
trained the model on 80% of the old patients and tested it on the remaining 20% old and all
the young patients. We define mean uncertainty score associated with a survival prediction
as the mean of the standard deviations in model predictions (for 50 forward passes) across all
time points. We observed a 110% higher mean uncertainty score associated with the young
patients (OOD) compared to the held-out old patients, as can be seen in Figure Thus, the
model was able to identify the pool of young patients as out of the training distribution. We
performed similar analysis by training the model on a subset of lower cancer stage patients
and saw a 43% higher mean uncertainty score for higher-stage patients (OOD) as compared
to the held-out lower stage patients.
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Figure 3: Predicted survival (curve) and model uncertainty (shaded area) for held-out and
OOD data.

4  Conclusion

We propose a Bayesian framework for modeling survival prediction that not only gives more
accurate predictions but is also interpretable and trustworthy due to its well-calibrated
uncertainty estimates. Our model is able to select prognostically important features in
the data and detect test samples that are out of the training distribution, making it real-
world deployable and capable of producing new biological insights when trained on higher-
dimensional data.
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